equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, E OUTROS.






teoria do absorvedor de Wheeler e Feynman, também chamada teoria time-symmetricteoria do meio absorvente[1] ou teoria de ação à distância de Wheeler e Feynman,[2]cujos criadores foram os físicos Richard Feynman e John Archibald Wheeler, é uma interpretação da eletrodinâmica que parte da ideia de que uma solução para as equações de campo eletromagnético tem que ser simétrica em relação ao inverso do tempo, tal como as próprias equações de campo. A razão disso é principalmente a importância da simetria T na Física. De fato não há razão aparente para que tal simetria deva ser quebrada e, portanto, uma direção do tempo não tem privilégios em relação à outra. Assim, uma teoria que respeite essa simetria parece mais elegante do que teorias em que se tem que eleger arbitrariamente uma direção do tempo como preferida em relação às demais.

Outra ideia-chave reminiscente do princípio de Mach e atribuída a Hugo Tetrode é a de que partículas elementares atuam sobre outras partículas elementares, que não elas próprias. Isso imediatamente remove o problema das autoenergias.

Resolução de problema de causalidade

T.C. Scott e R.A. Moore demonstraram que a aparente falta de causalidade, causada pela presença de avançado potenciaus de Liénard-Wiechert na sua formulação original pode ser removido através da fusão a sua teoria dentro de uma formulação totalmente relativista eletrodinâmica muitos de corpo, em termos de potenciais retardados apenas sem as complicações de a parte de absorção da teoria.[3][4] Se considerarmos a Lagrangiana agindo sobre a partícula um dos campos de tempo simétricos gerados pela partícula 2, temos:


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

onde  é a energia cinética relativística funcional de partícula i, e, e  são, respectivamente, os potenciais retardados e avançado de Liénard-Wiechertagindo em partícula j dos campos eletromagnéticos gerados por partícula relativista i. Por outro lado, a lagrangiana correspondente para partícula 2 fez sinal por partícula 1 é:


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Foi inicialmente demonstrado com matemática experimental através de matemática simbólica[5] e em seguida demonstrado matematicamente[6] de que a diferença entre um potencial retardado de partícula i agir sobre partícula j, e o potencial avançado de j partícula agindo sobre a partícula i é simplesmente um tempo total derivado :


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

ou uma "divergência", como é chamado no cálculo das variações , porque em nada contribui para as equações de Euler-Lagrange. Assim, através da adição da quantidade adequada de derivados de tempo total para estes lagrangianas, os potenciais avançados podem ser eliminados. O Lagrangeano para o problema dos N-Corpos é, portanto:


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

em que os potenciais avançados não fazem nenhuma aparência. Além disso, esta apresenta simetria Lagrangiana partícula-partícula.[3] Para  este Lagrangiana gerará exactamente as mesmas equações do movimento de  e  e, conseqüentemente, a física do problema é preservada. Assim, do ponto de vista de um observador do lado de fora da visualização relativista problema n-corpo , tudo é causal. No entanto, se isolar as forças que atuam sobre um corpo particular, o potencial avançado faz a sua aparição. Esta reformulação do problema vem com um preço: o N-corpo Lagrangiana depende de todas as derivadas temporais das curvas traçadas por todas as partículas ou seja, o Lagrangiano é a ordem infinita. No entanto, sob simetria troca de partículas totais e Generalized Momenta (resultante da definição de uma ordem de Lagrange infinito) são conservados. O recurso que pode parecer uma não-local é que o princípio de Hamilton é aplicada a um sistema de muitas partículas relativista como um todo, mas isso é o máximo que se pode ir com a teoria clássica (não da mecânica quântica). No entanto, muito progresso foi feito em examinar a questão não resolvida da quantização da teoria.[7][8][9] As soluções numéricas para o problema clássico também foram encontradas.[10] Note também que esta formulação recupera a lagrangiana de Darwin de que a equação Breit foi originalmente derivada, mas sem os termos dissipativos. [4] Isso garante acordo com a teoria ea experiência até, mas não incluindo o desvio de Lamb. Uma vantagem importante de sua abordagem é a formulação de uma canônica impulso generalizado totalmente preservado, tal como apresentado em artigo de revisão abrangente à luz do paradoxo EPR.[11]







Os potenciais de Liènard-Wiechert são a descrição matemática clássica dos potenciais escalar e vetorial de uma carga pontual em movimento. Sua derivação se origina das equações de Maxwell e portanto não é válida no domínio da mecânica quântica.

Potenciais retardados

Pode-se fazer cálculo para determinar os potenciais gerados por uma distribuição qualquer de cargas no espaço, dependentes do tempo. Nesta demonstração, chegamos a conclusão de que os potenciais gerador por uma distribuição dependente do tempo, em um ponto r, num instante de tempo t dependem desta distribuição num instante anterior que é denominado na literatura de tempo retardado. Escrevemos para o potencial elétrico:


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Aqui,  é a densidade de cargas avaliada no tempo retardado  e  é posição das cargas. O tempo retardado é definido como:


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Ou seja, o tempo retardado é devido a um tempo de propagação finito com velocidade c (velocidade da luz), e  é o tempo que o sinal levou para se propagar até o ponto . Note que  deve ser avaliado no tempo retardo também. Analogamente, podemos escrever para o potencial vetor magnético:


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Onde  é densidade volumétrica de corrente. É possível particularizar para os casos em 1 e 2 dimensões. Estes são os chamados potenciais retardados de uma distribuição de cargas e correntes.






A eletrodinâmica quântica é uma teoria abeliana de calibre, dotada de um grupo de calibre U(1).

campo de calibre que media a interação entre campos de spin 1/2, é o campo eletromagnético, que se apresenta sob a forma de fótons.

A descrição da interação se dá através da lagrangiana para a interação entre elétrons e pósitrons, que é dada por:


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

onde  e sua adjunta de Dirac  são os campos representando partículas eletricamente carregadas, especificamente, os campos do elétron e pósitron representados como espinores de Dirac.









Na física, o Lagrangeano de Euler-Heisenberg descreve a dinâmica não linear de campos eletromagnéticos no vácuo. Foi obtido por Werner Heisenberg e Hans Heinrich Euler em 1936. Ao tratar o vácuo como um meio, o lagrangeano prevê taxas de processos de interação de luz eletrodinâmica quântica[1].

Equação

Ele leva em conta polarização do vácuo para um loop, e é válido para campos eletromagnéticos que mudam lentamente em comparação com a massa eletrônica inversa[2]:


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Aqui  é a massa de elétrons, e a carga de elétrons 


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


////// , e .

No limite do campo fraco, isso se torna:


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Descreve-se a [[dispersão de fóton-fóton[3], em EDQ. Robert Karplus e Maurice Neuman calcularam a amplitude total,[4], que é muito pequena e não foi vista.

Comentários

Postagens mais visitadas deste blog